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Density of states for a dielectric superlattice: TE polarization
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We present a calculation of the band structure and the density of s@@S) for a dielectric one-
dimensional superlattic€SL). It is modeled by means of a periodic array of Dirac delta functions, character-
ized by the grating strength parametgiTocci et al, Phys. Rev. A53, 2799(1996]. The band structure for
TE or s-polarized modes is given by a simple, compact formula that reproduces well the qualitative features
exhibited by a real SL. We make use of equifrequency surfaces in wave-vector space—a concept similar to the
electron Fermi surfaces in solid state physics. This is helpful for deriving the DOS as a function of frequency
and theg parameter. The slope of the DOS exhibits discontinuities at all the edges of the band gaps. However,
the DOS is always finite, unlike the case that wave propagation is restricted to the Siwheig the DOS
vanishes in the band gapn fact, surprisingly, the DOS is actualgnhancedelative to free space for all
values of the frequency and of, and especially so at the lower edges of the band gaps. These results are
relevant to the spontaneous emission by an atom, or to dipole radiation in one-dimensional periodic structures.
[S1063-651%99)11302-3

PACS numbds): 42.70.Qs 42.25Bs, 78.20.Bh

[. INTRODUCTION is not considered; thus our attention is limited to the TE case.

Our model can be viewed as a limiting case of very thin

Sine it was proposed that the emission of electromagnetitayers with a very large dielectric constant, positioned at
radiation can be modified by the environmghi2], there has  €qual distances. This is the Diradunction model in which

been a lot of work in this respect. This work concerns thetn€Se thin layers are represented by a D#denetion. It has

description of the modification of dipole radiation in several bgen useq in .Re[.6] in the calc_ulation'of the power emis-
environments like metallic cavitigl3,4], dielectric cavities sion, considering only propagation of light paraliel to the SL

. \ . axis.
.[5]’ and superlattlce$_SL.s) [6._8]' .SUCh env!ronmgnts are The model makes sense if the dielectric constant of the
inhomogeneous media, in which either the dielectric constany

q d ii Ise th dium is h bw';lrriers is large enough and its thickness is small enough.
Epends on position or eISe the medium 1S NOMOYENEOUS bifye yerive a simple and compact dispersion relation that

bounded, giving rise to boundary conditions. In particular,qiyes rise to a band structure which is qualitatively the same
the periodic dielectric structures have earned a lot of attenss nat exhibited by a realistic SL. We have used the concept
tion because of the possibility of applications on low- of equifrequency surfaces aid the calculation of the DOS.
threshold microlasers and, more recently, in relation to thesych surfaces arise from the dispersion relation and are the
advent of information technologh®]. _optical equivalent of thé&ermi surfacef electrons in sol-

In the case of the SL structures, there are many studiegjs. The results show an increment of the DOS relative to the
[10,17 on the determination and analysis of the band gapsiree space for all the frequencies and, especially, near the
the description of the bulk and surface modes, etc. Currentlyqyer band-gap edges. The DOS exhibits discontinuities in
there is much interest in the band structure of photonic crysge slope at the band edges because of the change in the
tals[10], that are two- and three-dimensional generalizationghape of the equifrequency surface. These results can be ex-
of the superlatticswhich may be considered as a specialiended to a calculation of the power radiated by a dipole in
casg. _ - _ ~ this medium[13].

The environmental effects of a periodic dielectric medium |, gec. I, we discuss the electromagnetic normal modes
have been described by the density of std2®S) for the  for the Diracs function model. We derive the corresponding
electromagnetic field in the mediup2,7. The DOS is re-  gjispersion relation or the band structure and the TE field. We
lated to the transition rate by means of the Fermi golden rulezgjculate the DOS in Sec. IlI using the equifrequency sur-
Here it is stated that the transition rate is proportional to thgaces. These surfaces are the optical analogue of the Fermi

interaction dipole field times the DOS at the dipole transitiongrfaces for electrons in solids. The conclusions are pre-
frequency. This is valid to describe the power radiated in ongented in Sec. IV.

direction.
This paper deals with the calculation of the DOS for the Il. NORMAL MODES
field in a one-dimensional SL. The case of TM polarization _ _ _
A. Dirac 6 function model of a superlattice
A Dirac 6 function model of a SL is defined by the fol-
*Present address: Department of Electrical Engineering, Univerlowing dependence of the dielectric constant on the position
sity of California at Los Angeles, Los Angeles, CA 90024-7594. [6]:
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A g em & € where the dielectric constar(r) is a function of the posi-
— tion due to the inhomogeneity. In this equation, &g(r)
functions represent the monochromatic solutiésigenvec-
y tors) corresponding to the eigenfrequencieg,. To ensure
thatE,,(r) are a complete set of orthonormal functions, they
X have to fulfill the normalization and closure conditions as
z stated in Refs[6,14].
As for any SL, the field can be expressed as a linear
I - combination of the two independent TE and TM polarization
modes. Each of these modes satisfies By. Here we re-
strict our calculations of modes and DOS to the T4t
modes, so that the mode index equal to TE, can be sup-
pressed. Because the dielectric constant is independegnt of
andz, the fields must be proportional to etk y+k,2)]. For

FIG. 1. A Dirac & superlattice. In this caseA—0 and  OUr periodic structure the wave-vector comporigrit given
e,,—, while keeping the factog= (e,,— e,) A/d finite. The strati- by the Bloch vectokg which may be restricted to the first

(n-1)d  nd (n+1)d  (n+2)d

fication direction is thex axis, and the period is denoted Hy Brillouin zone, rlameIAy,— 7Z/d<kB$ w/d. Thus the wave
vector is k=kgx+kyy+k,y. Moreover, by the Bloch-
* Floquet theoreni15,16 the amplitude of the wave is given
e(X)=ey+gd >, S(x—nd). (1) by a periodic functioru,(x) which has the same period
n=—oo

as the given system. Then the electric field is given by

This model can be obtained from Fig. 1 if the widths of
the “barriers” become vanishingly smallA(—0), and, si-
multaneously, their dielectric constants increase beyond limit .
(em—°°). To understand this approach, compare the intewhereeg, is a unit vector with arbitrary direction in thgz

grals d_’f,,ze(x)dx for the model given in Eq(1) and for the plane(see Fig. 1, and perpendicular to the wave veckoas

realistic SL consisting of alternating dielectric layegsand ~ Well. Therefore, the polarization vecte is
€mn, Whose widths arel—A andA, respectively. Then, i§

in Eq. (1) is given by 8= — —y+ 7= —yCcos¢+2zsing (5)

Ei(r)=uy (x)ekerelkyhalg 4

A
g=(€m— 60)6' (2)  where we have definekj as the projection of the wave vec-
tor on theyz plane, expressed as

then the integrals ok(x), taken for the two models just 2 2 o

described, both giveep+g)d. Thus takinge,> €, and A ki=kz+kj, (6)
<d while keepingg constant, we can give a physical mean-

ing to our model Eq(1). It is expected to become realistic if and ¢ is the angle thak forms with thez axis. Replacing
the dielectric constant,, is very large and, at the same time, by x+d in Eq. (4), we obtain an alternative formulation of
the corresponding layers are very narrow. Gtmarameter is  the Bloch theorem,

called thegrating strength.

This consideration gives some justification to our model, Ex(x+d,y,z)=u(x+ d)eikaxeiksdei<kyy+k22)é<
so that its consequences, at least at the qualitative level, will e
not significantly differ from those that may be obtained from =e"8E((x,y,2). (7)

a realistic model. Moreover, thg parameter in Eq(1) can
be adjusted to yield realistic results within a limited fre- This means that the value of the function one period away
quency range. from any point is just a phase factor times the value of the
function at that point. This phase factor is given by the Bloch
B. TE modes wave vector. Substituting E¢4) into Eq. (3), we obtain

To start with, we have to solve the Maxwell wave equa- 5
tion for an inhomogeneous medium. For a given material d—Ek(x)+
geometry, we can describe the field therein as a linear super- dx?
position of the normal modes or eigenmodes. Each mode
may be labeled according to its wave vedtoand polariza- The solution of this equation, within any two adjacent
tion index p. The modes for the electric field are then de- barriers x=nd , is the sum of two Counterpropagating p|ane
fined by means of the Helmholtz equation waves in thex direction; this is reasonable as the medium is

stratified in this direction. Then

2

e -K-K2|E(0=0.  ®
C

2

wkp
VX VX Egp(r) = —,- €(r)Eyp(r) =0 3 | e
X VX Eyp(T) 2 €(r)Eyp(r) () E () =[AX+ Be K3, (9
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where K is given by the dispersion relation in the back- C. Boundary conditions
ground medium, which occupies the space between the bar- gocause of the particular model in Eff) that we are
ners, considering, the TE boundary conditions have to be formu-

2 lated in a rather different way than for the usual problem of
Kzzﬂe K2 (10) propagation in a periodic mediufil5]. Our derivation is
2 €0 K.

analogous to the scalar-wave calculation of Dowling and
Bowden[6]. Faraday’'s law can be applied, as usual, to any

If Eq. (9) represents the solution in the regior-0, we  |oop centered at a barriex=nd. Because the magnetic field
can apply the Bloch theoreffEg. (7)] n times in order to  must be finite, the electric field is continuous across the bar-

obtain the solution in thath region, riers. Thus the first boundary condition is
EfY(x)=eMed AgKOnd 4 gemikind]g - (11) EW(nd)=E" " (nd) (13)
where The first order derivative, however, is not continuous. To
nd<x<(n+1)d. (12)  set the boundary condition for the first order derivative, we
integrate the Helmholtz equatid8) over a small region near
Equation(11) can be rearranged to satisfy Hd). x=nd, using Eq.(1), that is
|
nd+e d2 nd+e Q)E nd+e
f dx—Ek(x)z—Kzf dek(x)——f dx gd>, S(x—nd)Ex(X). (14)
nd—e dX2 nd—e C2 nd—e n

Here the integration interval is small enough so that the function can be taken as a constant which is the function evaluated at
x=nd. Then the integration results in

2

d d _ 1)
EX(nd) — EPNnd)= - C—zkngk(nd>, (15)

which is the second boundary condition.

D. Solution of the eigenvalue problem; the band structure

Substitution of Eq(11) into Egs.(13) and(15) leads to the homogeneous system

A
M(B)=O. (16)

The characteristic matrikl of the system is defined as

1-exdi(K—kg)d] 1—exg —i(K+kg)d]
M= 1 — exfli (K —kg)d] =i a(wy .K) —1texd —i(K+kg)d]—ia(w K))’ (A7)
|
where we have defined(wy,K) as [6] for the casek,= 0, namely, withk = (w/c) \ey. K can be

either real or purely imaginary, since both types of solutions
fulfill the wave equation and the boundary conditions. Now
202K 18 \e can see from Eq19) that|f(K;wy)| can be greater than
one for certain ranges of values§f giving rise to complex
To avoid the trivial solution, we have that dét=0. Then  Solutions for the Bloch wave vectég . In these cases, there

we find the dispersion relation in terms of the Bloch wave@r® band gaps in which, for dmfinite) periodic medium, no

dw?
a(wy ,K)= 90wk

vectorkg andK (wy k), as defined in Eq(10), solutions exist for the field. We plot this band structure in
Fig. 2 for a grating strengty=0.1. In this plot, the shad-
cogkgd)=cogKd) — a(w,K)sin(Kd)=f(K;wy). owed areas indicate the allowed regions. From this figure it

(19 can be seen that the Diratfunction model actually repro-
duces all the qualitative features of a realistic band structure
This equation gives, implicitly, the eigenfrequencieg  [15]. As the grating strengtly increases, the band gaps be-
as a function of the wave-vector componekgsandk, . This  come wider. Nevertheless, this model has the interesting par-
dispersion relation was obtained by Dowling and Bowderticularity that the upper edges of all the band gaps are inde-
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FIG. 2. Band structure for the superlattice in Fig. 1, obtained
using the dispersion relation given in E(L9) for e,=1 andg
=0.1. The width of the forbidden bands increases vgthThis
means that, with increasing, the upper band edges are lowered
(the lower band edges are “pinned” at integer multiplesmofor
this mode). The free-space dispersion relation is recovered in th
limit g— 0. This band structure is very similar to that obtained for a
realistic superlattice.

pendent ofg. In fact, it is easy to show from Eg$§l9) and
(10) (with k;=0) that these edges are given bg/c=nmw
(n=1,2,...).

Using Egs.(16) and(17), we relate the coefficients and
B as

1— ei(K—kg)d

B (20

B 1_e—i(K+kB)dA’

and the total field, from Eq$11) and(20), may be expressed
as

2iAeir‘|de

Ef(n)(X) = m(SinK(X— nd)

—e kedsinK[x—(n+1)d]e.. (21

The constanA is arbitrary.

[Il. DENSITY OF STATES

We calculate the photon DOS for our SL model for the

TE polarization modes. In this case we have to consider that
we have continuous electromagnetic bands separated by the

band gaps forbidden for propagation.

We study the surfaces of constant frequerieguifre-
guency surfacgsin k space which are constructed with the
aid of the dispersion relation, E¢L9). Similar surfaces for
the electron energy eigenvalues are known in solid stat
physics ad-ermi surfaceg16], a concept that is also useful

for electromagnetic propagation and optical properties. In

Fig. 3 several(kg,ky,k,) =const curves are sketched in a
two-dimensional plot. Due to the azimuthal symmetry of the
problem, we can obtain the three-dimensional equifrequenc

DENSITY OF STATES FOR A DIELECTRT . ..
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surface w(kg ,K, ,k,) =const simply by rotating the curves
around thekg axis.

To describe the surfaces depicted in Fig. 3, take a look at
the band structure in Fig. 2. In this figure, horizontal lines are
drawn at the frequency values selected in Figs),33(b),

3(c), and 3d). Line (a) lies entirely within the lowest al-
lowed band, so that the equifrequency surface is closed. Line
(b), corresponding to a greater frequency, lies in part in the
first band gap and in part in the first band. This produces an
interruption in the corresponding equifrequency surface for
valuesk;d<1, as no solutions for the field exist therein. As
the frequency keeps increasing, the limge=const cuts
through more and more passbands, so that the equifrequency
surfaces split into several sections. This can be seen from
Figs. 3c) and 3d) with the aid of the corresponding fre-
quency lines transversing the band structure. These surfaces
grow in size with the frequency, as we can see fromkhe
range for each value of the frequency.

Notice thatk, can exceed the value ofqw/c. The
modes located in the part of the surface wheke
> Jeqwy/c correspond to the case of imaginaly, and

dence to evanescent solutions #8{"(x), Eq. (21), in the

regions between the barriers.

To perform the DOS calculation, it is required to use its
formal definition which is the number of available photon
modes per unit frequency range. We then construct two
equifrequency surfaces, namelyy(kg,k,,k,)=w and
o(kg,ky,k;)=w+Aw, whereo is an arbitrary value of the
frequency andAw is a small increment. We calculate the
volume therein, and divide it by the volume occupied by a
single mode. Then the differential volume elemerk ispace
within the surfaces is given bisee Fig. 4

AV =27k AkAk,. (22
Here Ak,=[(Akg)?+ (Ak))?]Y? is a differential segment
parallel to the equifrequency surface, akd, is the separa-
tion of the two surfaces that corresponds to the frequency
increment. In order to obtain Ed22), it is necessary to
rotate the area elememtx;A«, around thek; axis. Now
Ak, is perpendicular to the surface, and, hence, by defini-
tion,

Aw

AKn:—|ka| .

(23

Substituting Eq(23) into Eqg. (22), and integrating over the
equifrequency surface, we have that the total phase-space
volume contributing to the frequency range, +dw) is

kH
dVv =27waf —dk;,
fwk k mk|vkw| ‘

where we take the limit of infinitesimal increments. The
number of modes within the range (w+dw) is obtained
gy dividing the volume calculated in E¢R4) by the volume
corresponding to one mode, £23/V, whereV is the volume
of the system. This yields

(24)

\Y I _
dN(w)—4— wkwdkt do=D(w)dw. (25

772

Yy
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FIG. 3. Four cross section&{=0) of equifrequency surfaces(kg .k, ,k,) = w=const forg=0.1. Due to the azimutal symmetry, the
surfaces are formed by rotating the curves aroundkghaxis. The dashed lines dendig| = w/c, so that the region betwegautside these
lines is characterized by re@inaginary K values.(a) Equifrequency surface fasd/c=1. (b) wd/c=3; the regiork,d<1 is excluded from
the surface because such valuekgf lie in the forbidden bandsee Fig. 2 (c) wd/c=4. (d) wd/c=6; notice the further splitting of the
surfaces due to the apparition of more forbidden baftius regionsk,d<2 and 5<k;d<6 are now excluded

Becausew is a function ofk, we can write

ow. Jdw. Jdwa

Vo= —X+ —y+ —2z. 26
KE kg akyy ok, 26
By the use of Eqs(19), (10), and(6) we have that
c? K sinkgd < kyao kg
|[Vio|=— _ _ X+ —=y+—12|. (27
w| (g+ ep)sinKd+ (gw?d/2c?K) e[ cosKd— (1/Kd)sinKd] €~ €o-
Then, the final expression for the DOS is
Vfoa) k F((,U,K((U,ku))
D(w):Tf th 2r . ” 2 . 2 12’ (28)
am?c?Joe {Ksif Kd+ a(w,K)sin 2Kd— a?(,K)sir? Kd]+ Kk F (o,K(w,k))}
|
where we have defined the functiéi(w,K(w,k|)) as to note that, even though the group velodi; | vanishes
for on-axis propagationk{=0), at the band edges the den-
F(o,K(w,k)))=(g/ey+1)sinKd+ a(w,K) sity of states remains finite. For other valueskpfalways
|V o|#0. Nevertheless for frequencies at the band edges,
1. re should be taken when performin Iculation. Indeed
x| cosKd— —sinKd |. (29 ~ care should be take en perfo g a calculation. Indeed,
Kd we took the limits of frequencies approaching these edges,

this process giving rise to convergence.
For frequencies above the first band, the gaps in the We plot the DOSEq. (28)] for different values ofg in
equifrequency surfaces must be carefully avoifieee Figs. Fig. 5. The inset in this figure shows a plot for a larger range
3(b)—3(d)] when performing the integration. It is important of frequencies. It is seen that there are sharp discontinuities
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in the first order derivative at certain values of the frequency.
These discontinuities arise from the band gaps of the band
structure. Forg=0.1 the band structure is given in Fig. 2.
This value ofg(<1) corresponds to a weak modulation of
the dielectric constant, so that th&(w) curve lies quite
close to the free-space D@&ashegl Nevertheless, the slope
dD(w)/dw suffers an abrupt decrease fibw/c=2.858, and
then an increase fatw/c= 7. These values of the frequency
are, precisely, the lower and upper edges of the first band gap
for k,=0; see Fig. 2. A similar decrease and subsequent
increase of the slope reoccurs for the normalized frequencies
5.75 and 2r (see the insg¢t These values are just the bounds
of the second band gap. Of course, because we have allowed
for propagation in an arbitrary direction—not merely along G 4. partial cross sections in the=0 plane of two equifre-
the axis of the SL—there are allowed modes for every valugency surfaces denoted byandw+Aw. It is seen that £ «,)?
of w, so that the DOS never vanishes. = (Akg)?+ (Ak;)2. Using the azimutal symmetry, the total volume

For increasing values of the grating strengtthe D(w)  element isAV,=2mkAxAk,, and has the shape of a ring of a
curves move further away from the free-space curve. In adrectangular cross section.
dition, the discontinuities become longer, simply because the
gaps increase witly. The most eyecatching effect is that to (60_,_9)3/2_ Forg=0.9, this is an enhancement by a factor
sharp peaks appear at the lower edges of the gaps, and ag#,about 2.6 with respect to vacuum. However, no need to
however, resolved only for substantial valuegjofThis isto  say, the structure does matter greatly, as manifest especially
say that, not surprisingly, the DOS decreases every time tha the band edges. Thus, a reduction of the DOS with respect
w crosses the threshold between a band and a gap. Alse free space does not occur; this despite the fact fbat,
notice that the increase in the slope occurslatc= for  one-dimensional propagatipthe DOS actually vanishes for
all g. This is because the upper edges of the band gaps afequencies within the one-dimensional gaps.
independent ofj for our Dirac § function model, as noted
above. . . . IV. CONCLUSION

In Fig. 5 an increment of the DOS relative to free space is
present for all frequencies, and is particularly pronounced for We have presented a calculation of the modes and of the
frequencies near the lower edges of the band gaps. The edensity of states for a periodic dielectric medium. The cal-
hancement increases rapidly with the grating strength parantulation is restricted to the TE polarization mode. We made
eterg. This can be understood qualitatively from the factuse of a Diracd function model, characterized by the grating
that the DOS of an inlimited, homogeneous dielectric isstrength parametay, as an approximation to the real SL.
(w?/27r°c®) €2 per unit volume. For our mod€Eq. (1)], the A solution of the inhomogeneous wave equation was pre-
average dielectric constant of the superlatticée&x))=¢,  sented with the aid of the Bloch theorem. A very simple,
+g. Therefore, ignoring the structure of the superlattice, oneeompact formula was derived for the dispersion relation, and
could expect an enhancement of the DOS that is proportiondhe resulting band structure is found to be qualitatively simi-
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FIG. 5. Density of states as a function of the reduced frequertlg for several values of the grating strengthThe inset extends the
frequency range to the interval (G;2. Here we can see the discontinuities in the slope for frequencies that define the band edges. Notice
that the DOS is enhanced for all the valueswofindg, and especially at the lower edges of the band gaps.
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lar to that obtained for a realistic SL. Hence, the Dit@&c propagation in all directions in space. As a consequence, the
function model is expected to give reasonable results for th®OS never vanishes, as occurs if the wave is restricted to
DOS. propagate along the axis of the $6]. Nevertheless, intu-
The DOS was calculated with the aid of the equifre-itively, one would have expected at least some reduction of
quency surfaces which are similar to the Fermi surfaces fothe DOS associated with the partial gaps. The fact that this
electrons in solids. Within any one band the DOS increaseggn never happen is rather surprising. These conclusions
monotonously with the frequency, reaching a sharp and naishould be helpful for understanding spontaneous emission
row maximum at the upper band eddfer k;=0). Also,  (or dipole radiatiohin laminated structures. A similar analy-

upon crossing from a stop band into a pass bawhin for  sjs of the DOS for the TM polarization mode is clearly de-
k,=0) there is an abrupt increase in the DOS. The resultgjrapble, and will be undertaken in the future.

exhibit an enhancement of the DOS, in comparison to free
space, for all values of the frequency. This enhancement in-
creases with the grating strengiias can be expected from
the fact that(e(x)) is proportional to €,+g)*?], and is
especially pronounced at the lower band edges of the band I.A.R. thanks the CONACyYT and SNI for financial sup-
gaps. This behavior is the result of our taking into accoungport.

ACKNOWLEDGMENTS

[1] E. M. Purcell, Phys. Rew9, 618(1946. [8] A. Kamli, M. Babiker, A. Al-Hairy, and N. Enfati, Phys. Rev.
[2] D. Kleppner, Phys. Rev. Lett7, 233(1981). A 55, 1454(1997).
[3] P. W. Milloni and P. L. Knight, Opt. Commurg, 119(1973; [9] J. D. Joannopoulos, Pierre R. Villenueve, and Shanhui Fan,
A. O. Barut and J. P. Dowling, Phys. Rev.3, 649(1987; I. Nature (London 386, 143(1997).
Abram and G. Bourdonipid. 54, 3476(1996; F. de Martini,  [10] J. D. Joannopoulos, R. D. Meade, and J. J. WiRhotonic
M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, Crystals: Molding the Flow of LightPrinceton University
ibid. 43, 2480(1991); M. A. Rippin and P. L. Knight, J. Mod. Press, Princeton, 1985
Opt. 43, 807 (1996. [11] F. Ramos-Mendieta and P. Halevi, Opt. Commu29, 1

[4]1. Alvardo-Rodfguez, P. Halevi, and J. J. Sdwez-
Mondragm, Rev. Mex. Fis44, 268(1998.

[5] Y. Yamamoto, S. Machida, Y. Horikoshi, and K. Igeta, Opt.
Commun.50, 337(199)); R. J. Ram and D. |. Babic, IEEE J.
Quantum Electron31, 2 (1999; H. Rigneault and S. Mon-
neret, Phys. Rev. A4, 2356(1996); S. Ciancaleoni, P. Mata-
loni, O. Jedrkiewicz, and F. De Martini, J. Opt. Soc. AmM1&

(1996; J. Opt. Soc. Am. B14, 370 (1997, and references
therein.

[12] Michael D. Tocci, Michael Scalora, Mark J. Bloemer, J. P.
Dowling, and C. M. Bowden, Phys. Rev. 33, 2799(1996.

[13] I. Alvarado-Rodrguez and P. Haleviunpublisheg

[14] R. J. Glauber and M. Lewenstein, Phys. Rev.48 467

1556(1997). (199). _ .
[6] J. P. Dowling and C. M. Bowden, Phys. Rev. 46, 612 [15] P. Yeh,Optical Waves in Layered Medi@Viley, New York,
(1992. 1988.

[7] Toshio Suzuki and Paul K. L. Yu, J. Opt. Soc. Am1B, 570 [16] C. Kittel, Introduction to Solid State Physid&Viley, New
(1995. York, 1976.



