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Density of states for a dielectric superlattice: TE polarization
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We present a calculation of the band structure and the density of states~DOS! for a dielectric one-
dimensional superlattice~SL!. It is modeled by means of a periodic array of Dirac delta functions, character-
ized by the grating strength parameterg @Tocci et al., Phys. Rev. A53, 2799~1996!#. The band structure for
TE or s-polarized modes is given by a simple, compact formula that reproduces well the qualitative features
exhibited by a real SL. We make use of equifrequency surfaces in wave-vector space—a concept similar to the
electron Fermi surfaces in solid state physics. This is helpful for deriving the DOS as a function of frequency
and theg parameter. The slope of the DOS exhibits discontinuities at all the edges of the band gaps. However,
the DOS is always finite, unlike the case that wave propagation is restricted to the SL axis~where the DOS
vanishes in the band gap!. In fact, surprisingly, the DOS is actuallyenhancedrelative to free space for all
values of the frequency and ofg, and especially so at the lower edges of the band gaps. These results are
relevant to the spontaneous emission by an atom, or to dipole radiation in one-dimensional periodic structures.
@S1063-651X~99!11302-3#
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I. INTRODUCTION

Sine it was proposed that the emission of electromagn
radiation can be modified by the environment@1,2#, there has
been a lot of work in this respect. This work concerns
description of the modification of dipole radiation in seve
environments like metallic cavities@3,4#, dielectric cavities
@5#, and superlattices~SL’s! @6–8#. Such environments ar
inhomogeneous media, in which either the dielectric cons
depends on position or else the medium is homogeneous
bounded, giving rise to boundary conditions. In particul
the periodic dielectric structures have earned a lot of at
tion because of the possibility of applications on lo
threshold microlasers and, more recently, in relation to
advent of information technology@9#.

In the case of the SL structures, there are many stu
@10,11# on the determination and analysis of the band ga
the description of the bulk and surface modes, etc. Curren
there is much interest in the band structure of photonic c
tals @10#, that are two- and three-dimensional generalizatio
of the superlattice~which may be considered as a spec
case!.

The environmental effects of a periodic dielectric mediu
have been described by the density of states~DOS! for the
electromagnetic field in the medium@12,7#. The DOS is re-
lated to the transition rate by means of the Fermi golden r
Here it is stated that the transition rate is proportional to
interaction dipole field times the DOS at the dipole transit
frequency. This is valid to describe the power radiated in o
direction.

This paper deals with the calculation of the DOS for t
field in a one-dimensional SL. The case of TM polarizati
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is not considered; thus our attention is limited to the TE ca
Our model can be viewed as a limiting case of very th
layers with a very large dielectric constant, positioned
equal distances. This is the Diracd function model in which
these thin layers are represented by a Diracd function. It has
been used in Ref.@6# in the calculation of the power emis
sion, considering only propagation of light parallel to the S
axis.

The model makes sense if the dielectric constant of
barriers is large enough and its thickness is small enou
We derive a simple and compact dispersion relation t
gives rise to a band structure which is qualitatively the sa
as that exhibited by a realistic SL. We have used the conc
of equifrequency surfacesto aid the calculation of the DOS
Such surfaces arise from the dispersion relation and are
optical equivalent of theFermi surfacesof electrons in sol-
ids. The results show an increment of the DOS relative to
free space for all the frequencies and, especially, near
lower band-gap edges. The DOS exhibits discontinuities
the slope at the band edges because of the change in
shape of the equifrequency surface. These results can b
tended to a calculation of the power radiated by a dipole
this medium@13#.

In Sec. II, we discuss the electromagnetic normal mo
for the Diracd function model. We derive the correspondin
dispersion relation or the band structure and the TE field.
calculate the DOS in Sec. III using the equifrequency s
faces. These surfaces are the optical analogue of the F
surfaces for electrons in solids. The conclusions are p
sented in Sec. IV.

II. NORMAL MODES

A. Dirac d function model of a superlattice

A Dirac d function model of a SL is defined by the fo
lowing dependence of the dielectric constant on the posi
@6#:
r-
3624 ©1999 The American Physical Society
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e~x!5e01gd (
n52`

`

d~x2nd!. ~1!

This model can be obtained from Fig. 1 if the widths
the ‘‘barriers’’ become vanishingly small (D→0), and, si-
multaneously, their dielectric constants increase beyond l
(em→`). To understand this approach, compare the in

grals*2d/2
d/2 e(x)dx for the model given in Eq.~1! and for the

realistic SL consisting of alternating dielectric layerseo and
em , whose widths ared2D andD, respectively. Then, ifg
in Eq. ~1! is given by

g5~em2e0!
D

d
, ~2!

then the integrals ofe(x), taken for the two models jus
described, both give (e01g)d. Thus takingem@e0 and D
!d while keepingg constant, we can give a physical mea
ing to our model Eq.~1!. It is expected to become realistic
the dielectric constantem is very large and, at the same tim
the corresponding layers are very narrow. Theg parameter is
called thegrating strength.

This consideration gives some justification to our mod
so that its consequences, at least at the qualitative level,
not significantly differ from those that may be obtained fro
a realistic model. Moreover, theg parameter in Eq.~1! can
be adjusted to yield realistic results within a limited fr
quency range.

B. TE modes

To start with, we have to solve the Maxwell wave equ
tion for an inhomogeneous medium. For a given mate
geometry, we can describe the field therein as a linear su
position of the normal modes or eigenmodes. Each m
may be labeled according to its wave vectork and polariza-
tion index p. The modes for the electric field are then d
fined by means of the Helmholtz equation

¹3¹3Ekp~r !2
vkp

2

c2
e~r !Ekp~r !50 ~3!

FIG. 1. A Dirac d superlattice. In this case,D→0 and

em→` , while keeping the factorg5(em2e0)D/d finite. The strati-
fication direction is thex axis, and the period is denoted byd.
it
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where the dielectric constante(r ) is a function of the posi-
tion due to the inhomogeneity. In this equation, theEkp(r )
functions represent the monochromatic solutions~eigenvec-
tors! corresponding to the eigenfrequenciesvkp . To ensure
thatEkp(r ) are a complete set of orthonormal functions, th
have to fulfill the normalization and closure conditions
stated in Refs.@6,14#.

As for any SL, the field can be expressed as a lin
combination of the two independent TE and TM polarizati
modes. Each of these modes satisfies Eq.~3!. Here we re-
strict our calculations of modes and DOS to the TE~s!
modes, so that the mode indexp, equal to TE, can be sup
pressed. Because the dielectric constant is independenty
andz, the fields must be proportional to exp@i(kyy1kzz)#. For
our periodic structure the wave-vector componentkx is given
by the Bloch vectorkB which may be restricted to the firs
Brillouin zone, namely,2p/d,kB<p/d. Thus the wave
vector is k5kBx̂1kyŷ1kzŷ. Moreover, by the Bloch-
Floquet theorem@15,16# the amplitude of the wave is give
by a periodic functionuk(x) which has the same period (d)
as the given system. Then the electric field is given by

Ek~r !5ukB
~x!eikBxei ~kyy1kzz!êk ~4!

where êk is a unit vector with arbitrary direction in theyz
plane~see Fig. 1!, and perpendicular to the wave vectork as
well. Therefore, the polarization vectorêk is

êk52
kz

ki
ŷ1

ky

ki
ẑ52 ŷ cosf1 ẑsinf ~5!

where we have definedki as the projection of the wave vec
tor on theyz plane, expressed as

ki
25kz

21ky
2, ~6!

andf is the angle thatk forms with thez axis. Replacingx
by x1d in Eq. ~4!, we obtain an alternative formulation o
the Bloch theorem,

Ek~x1d,y,z!5u~x1d!eikBxeikBdei ~kyy1kzz!êk

5eikBdEk~x,y,z!. ~7!

This means that the value of the function one period aw
from any point is just a phase factor times the value of
function at that point. This phase factor is given by the Blo
wave vector. Substituting Eq.~4! into Eq. ~3!, we obtain

d2

dx2
Ek~x!1Fvk

2

c2
e~x!2ky

22kz
2GEk~x!50. ~8!

The solution of this equation, within any two adjace
barriers x5nd , is the sum of two counterpropagating plan
waves in thex direction; this is reasonable as the medium
stratified in this direction. Then

Ek~x!5@AeiKx1Be2 iKx#êk, ~9!
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where K is given by the dispersion relation in the bac
ground medium, which occupies the space between the
riers,

K25
vk

2

c2
e02ki

2 . ~10!

If Eq. ~9! represents the solution in the regionn50, we
can apply the Bloch theorem@Eq. ~7!# n times in order to
obtain the solution in thenth region,

Ek
~n!~x!5einkBd@AeiK ~x2nd!1Be2 iK ~x2nd!#êk , ~11!

where

nd,x,~n11!d. ~12!

Equation~11! can be rearranged to satisfy Eq.~4!.
ve

e

ar-
C. Boundary conditions

Because of the particular model in Eq.~1! that we are
considering, the TE boundary conditions have to be form
lated in a rather different way than for the usual problem
propagation in a periodic medium@15#. Our derivation is
analogous to the scalar-wave calculation of Dowling a
Bowden@6#. Faraday’s law can be applied, as usual, to a
loop centered at a barrier,x5nd. Because the magnetic fiel
must be finite, the electric field is continuous across the b
riers. Thus the first boundary condition is

Ek
~n!~nd!5Ek

~n21!~nd! ~13!

The first order derivative, however, is not continuous.
set the boundary condition for the first order derivative,
integrate the Helmholtz equation~8! over a small region nea
x5nd, using Eq.~1!, that is
luated at
E
nd2e

nd1e

dx
d2

dx2
Ek~x!52K2E

nd2e

nd1e

dx Ek~x!2
vk

2

c2 End2e

nd1e

dx gd(
n

d~x2nd!Ek~x!. ~14!

Here the integration interval is small enough so that the function can be taken as a constant which is the function eva
x5nd. Then the integration results in

d

dx
Ek

~n!~nd!2
d

dx
Ek

~n21!~nd!52
vk

2

c2
gdEk~nd!, ~15!

which is the second boundary condition.

D. Solution of the eigenvalue problem; the band structure

Substitution of Eq.~11! into Eqs.~13! and ~15! leads to the homogeneous system

M S A

BD 50. ~16!

The characteristic matrixM of the system is defined as

M5S 12exp@ i ~K2kB!d# 12exp@2 i ~K1kB!d#

12exp@ i ~K2kB!d#2 ia~vk ,K ! 211exp@2 i ~K1kB!d#2 ia~vk ,K !
D , ~17!
ns
w

e

in

e it

ture
e-
par-
de-
where we have defineda(vk ,K) as

a~vk ,K !5
gdvk

2

2c2K
. ~18!

To avoid the trivial solution, we have that detM50. Then
we find the dispersion relation in terms of the Bloch wa
vectorkB andK(vk ,ki), as defined in Eq.~10!,

cos~kBd!5cos~Kd!2a~vk ,K !sin~Kd![ f ~K;vk!.
~19!

This equation gives, implicitly, the eigenfrequenciesvk
as a function of the wave-vector componentskB andki . This
dispersion relation was obtained by Dowling and Bowd
 n

@6# for the caseki50, namely, withK5(v/c)Ae0. K can be
either real or purely imaginary, since both types of solutio
fulfill the wave equation and the boundary conditions. No
we can see from Eq.~19! that u f (K;vk)u can be greater than
one for certain ranges of values ofK, giving rise to complex
solutions for the Bloch wave vectorkB . In these cases, ther
are band gaps in which, for an~infinite! periodic medium, no
solutions exist for the field. We plot this band structure
Fig. 2 for a grating strengthg50.1. In this plot, the shad-
owed areas indicate the allowed regions. From this figur
can be seen that the Diracd function model actually repro-
duces all the qualitative features of a realistic band struc
@15#. As the grating strengthg increases, the band gaps b
come wider. Nevertheless, this model has the interesting
ticularity that the upper edges of all the band gaps are in
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pendent ofg. In fact, it is easy to show from Eqs.~19! and
~10! ~with ki50) that these edges are given byvd/c5np
(n51,2, . . . ).

Using Eqs.~16! and~17!, we relate the coefficientsA and
B as

B52
12ei ~K2kB!d

12e2 i ~K1kB!d
A, ~20!

and the total field, from Eqs.~11! and~20!, may be expressed
as

Ek
~n!~x!5

2iAeinkBd

12e2 i ~K1kB!d
„sinK~x2nd!

2e2 ikBd sinK@x2~n11!d#…êk . ~21!

The constantA is arbitrary.

III. DENSITY OF STATES

We calculate the photon DOS for our SL model for t
TE polarization modes. In this case we have to consider
we have continuous electromagnetic bands separated b
band gaps forbidden for propagation.

We study the surfaces of constant frequency~equifre-
quency surfaces! in k space which are constructed with th
aid of the dispersion relation, Eq.~19!. Similar surfaces for
the electron energy eigenvalues are known in solid s
physics asFermi surfaces@16#, a concept that is also usefu
for electromagnetic propagation and optical properties.
Fig. 3 severalv(kB ,ky ,kz)5const curves are sketched in
two-dimensional plot. Due to the azimuthal symmetry of t
problem, we can obtain the three-dimensional equifreque

FIG. 2. Band structure for the superlattice in Fig. 1, obtain
using the dispersion relation given in Eq.~19! for e051 and g
50.1. The width of the forbidden bands increases withg. This
means that, with increasingg, the upper band edges are lower
~the lower band edges are ‘‘pinned’’ at integer multiples ofp for
this model!. The free-space dispersion relation is recovered in
limit g→0. This band structure is very similar to that obtained fo
realistic superlattice.
at
the

te

n

cy

surfacev(kB ,ky ,kz)5const simply by rotating the curve
around thekB axis.

To describe the surfaces depicted in Fig. 3, take a loo
the band structure in Fig. 2. In this figure, horizontal lines a
drawn at the frequency values selected in Figs. 3~a!, 3~b!,
3~c!, and 3~d!. Line ~a! lies entirely within the lowest al-
lowed band, so that the equifrequency surface is closed. L
~b!, corresponding to a greater frequency, lies in part in
first band gap and in part in the first band. This produces
interruption in the corresponding equifrequency surface
valueskid,1, as no solutions for the field exist therein. A
the frequency keeps increasing, the linev5const cuts
through more and more passbands, so that the equifrequ
surfaces split into several sections. This can be seen f
Figs. 3~c! and 3~d! with the aid of the corresponding fre
quency lines transversing the band structure. These surf
grow in size with the frequency, as we can see from theki

range for each value of the frequency.
Notice that ki can exceed the value ofAe0v/c. The

modes located in the part of the surface whereki

.Ae0vk /c correspond to the case of imaginaryK, and
hence to evanescent solutions forEk

(n)(x), Eq. ~21!, in the
regions between the barriers.

To perform the DOS calculation, it is required to use
formal definition which is the number of available photo
modes per unit frequency range. We then construct
equifrequency surfaces, namely,v(kB ,ky ,kz)5v and
v(kB ,ky ,kz)5v1Dv, wherev is an arbitrary value of the
frequency andDv is a small increment. We calculate th
volume therein, and divide it by the volume occupied by
single mode. Then the differential volume element ink space
within the surfaces is given by~see Fig. 4!

DVk52pkiDk tDkn . ~22!

Here Dk t5@(DkB)21(Dki)2#1/2 is a differential segmen
parallel to the equifrequency surface, andDkn is the separa-
tion of the two surfaces that corresponds to the freque
increment. In order to obtain Eq.~22!, it is necessary to
rotate the area elementDk tDkn around theki axis. Now
Dkn is perpendicular to the surface, and, hence, by defi
tion,

Dkn5
Dv

u¹kvu
. ~23!

Substituting Eq.~23! into Eq. ~22!, and integrating over the
equifrequency surface, we have that the total phase-sp
volume contributing to the frequency range (v,v1dv) is

E
vk

dVk52p dvE
vk

ki

u¹kvu
dk t , ~24!

where we take the limit of infinitesimal increments. Th
number of modes within the range (v,v1dv) is obtained
by dividing the volume calculated in Eq.~24! by the volume
corresponding to one mode, (2p)3/V, whereV is the volume
of the system. This yields

dN~v!5
V

4p2F Evk

ki

u¹kvu
dk tGdv[D~v!dv. ~25!

d

e



e
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Becausev is a function ofk, we can write

¹kv5
]v

]kB
x̂1

]v

]ky
ŷ1

]v

]kz
ẑ. ~26!

By the use of Eqs.~19!, ~10!, and~6! we have that

u¹kvu5
c2

vk
U K sinkBd

~g1e0!sinKd1 ~gv2d/2c2K ! e0@cosKd2 ~1/Kd!sinKd#
x̂1

ky

e0
ŷ1

kz

e0-
ẑU . ~27!

Then, the final expression for the DOS is

D~v!5
Ve0v

4p2c2Evk

dk t

kiF„v,K~v,ki!…

$K2@sin2 Kd1a~v,K !sin 2Kd2a2~v,K !sin2 Kd#1ki
2F„v,K~v,ki!…%1/2

, ~28!

FIG. 3. Four cross sections (kz50) of equifrequency surfacesv(kB ,ky ,kz)5v5const forg50.1. Due to the azimutal symmetry, th
surfaces are formed by rotating the curves around thekB axis. The dashed lines denoteukyu5v/c, so that the region between~outside! these
lines is characterized by real~imaginary! K values.~a! Equifrequency surface forvd/c51. ~b! vd/c53; the regionkid,1 is excluded from
the surface because such values ofkid lie in the forbidden band~see Fig. 2!. ~c! vd/c54. ~d! vd/c56; notice the further splitting of the
surfaces due to the apparition of more forbidden bands~the regionskid,2 and 5,kid,6 are now excluded!.
th
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n-

es,
ed,
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ge
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where we have defined the functionF„v,K(v,ki)… as

F„v,K~v,ki!…[~g/e011!sinKd1a~v,K !

3FcosKd2
1

Kd
sinKdG . ~29!

For frequencies above the first band, the gaps in
equifrequency surfaces must be carefully avoided@see Figs.
3~b!–3~d!# when performing the integration. It is importan
e

to note that, even though the group velocityu¹kvu vanishes
for on-axis propagation (ki50), at the band edges the de
sity of states remains finite. For other values ofki always
u¹kvuÞ0. Nevertheless for frequencies at the band edg
care should be taken when performing a calculation. Inde
we took the limits of frequencies approaching these edg
this process giving rise to convergence.

We plot the DOS@Eq. ~28!# for different values ofg in
Fig. 5. The inset in this figure shows a plot for a larger ran
of frequencies. It is seen that there are sharp discontinu
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in the first order derivative at certain values of the frequen
These discontinuities arise from the band gaps of the b
structure. Forg50.1 the band structure is given in Fig.
This value ofg(!1) corresponds to a weak modulation
the dielectric constant, so that theD(v) curve lies quite
close to the free-space DOS~dashed!. Nevertheless, the slop
dD(v)/dv suffers an abrupt decrease fordv/c52.858, and
then an increase fordv/c5p. These values of the frequenc
are, precisely, the lower and upper edges of the first band
for ki50; see Fig. 2. A similar decrease and subsequ
increase of the slope reoccurs for the normalized frequen
5.75 and 2p ~see the inset!. These values are just the boun
of the second band gap. Of course, because we have allo
for propagation in an arbitrary direction—not merely alo
the axis of the SL—there are allowed modes for every va
of v, so that the DOS never vanishes.

For increasing values of the grating strengthg the D(v)
curves move further away from the free-space curve. In
dition, the discontinuities become longer, simply because
gaps increase withg. The most eyecatching effect is th
sharp peaks appear at the lower edges of the gaps, and
however, resolved only for substantial values ofg. This is to
say that, not surprisingly, the DOS decreases every time
v crosses the threshold between a band and a gap.
notice that the increase in the slope occurs atdv/c5p for
all g. This is because the upper edges of the band gaps
independent ofg for our Dirac d function model, as noted
above.

In Fig. 5 an increment of the DOS relative to free space
present for all frequencies, and is particularly pronounced
frequencies near the lower edges of the band gaps. The
hancement increases rapidly with the grating strength par
eter g. This can be understood qualitatively from the fa
that the DOS of an inlimited, homogeneous dielectric
(v2/2p2c3)e3/2 per unit volume. For our model@Eq. ~1!#, the
average dielectric constant of the superlattice is^e(x)&5e0
1g. Therefore, ignoring the structure of the superlattice, o
could expect an enhancement of the DOS that is proportio
.
d
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to (e01g)3/2. For g50.9, this is an enhancement by a fact
of about 2.6 with respect to vacuum. However, no need
say, the structure does matter greatly, as manifest espec
at the band edges. Thus, a reduction of the DOS with res
to free space does not occur; this despite the fact that,for
one-dimensional propagation, the DOS actually vanishes fo
frequencies within the one-dimensional gaps.

IV. CONCLUSION

We have presented a calculation of the modes and of
density of states for a periodic dielectric medium. The c
culation is restricted to the TE polarization mode. We ma
use of a Diracd function model, characterized by the gratin
strength parameterg, as an approximation to the real SL.

A solution of the inhomogeneous wave equation was p
sented with the aid of the Bloch theorem. A very simp
compact formula was derived for the dispersion relation, a
the resulting band structure is found to be qualitatively sim

FIG. 4. Partial cross sections in thekz50 plane of two equifre-
quency surfaces denoted byv andv1Dv. It is seen that (Dk t)

2

5(DkB)21(Dki)2. Using the azimutal symmetry, the total volum
element isDVk52pkiDk tDkn , and has the shape of a ring of
rectangular cross section.
. Notice

FIG. 5. Density of states as a function of the reduced frequencyvd/c for several values of the grating strengthg. The inset extends the

frequency range to the interval (0,2p). Here we can see the discontinuities in the slope for frequencies that define the band edges
that the DOS is enhanced for all the values ofv andg, and especially at the lower edges of the band gaps.
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lar to that obtained for a realistic SL. Hence, the Diracd
function model is expected to give reasonable results for
DOS.

The DOS was calculated with the aid of the equifr
quency surfaces which are similar to the Fermi surfaces
electrons in solids. Within any one band the DOS increa
monotonously with the frequency, reaching a sharp and
row maximum at the upper band edge~for ki50). Also,
upon crossing from a stop band into a pass band~again for
ki50) there is an abrupt increase in the DOS. The res
exhibit an enhancement of the DOS, in comparison to f
space, for all values of the frequency. This enhancemen
creases with the grating strengthg @as can be expected from
the fact that^e(x)& is proportional to (e01g)3/2)#, and is
especially pronounced at the lower band edges of the b
gaps. This behavior is the result of our taking into acco
n,

t.
.

-

e

-
r
s
r-

ts
e
n-

nd
t

propagation in all directions in space. As a consequence,
DOS never vanishes, as occurs if the wave is restricted
propagate along the axis of the SL@6#. Nevertheless, intu-
itively, one would have expected at least some reduction
the DOS associated with the partial gaps. The fact that
can never happen is rather surprising. These conclus
should be helpful for understanding spontaneous emis
~or dipole radiation! in laminated structures. A similar analy
sis of the DOS for the TM polarization mode is clearly d
sirable, and will be undertaken in the future.
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